335
M. Xu et al., "Senolytics Improve Physical Function and Increase Lifespan in Old Age," Nature Medicine 24, no. 8 (August 2018): 1246–56, https://doi.org/10.1038/s41591–018–0092–9.
336
Donavyn Coffey, "Does the Human Body Replace Itself Every 7 Years?," Live Science, last modified July 22, 2022, https://www.livescience.com/33179-does-human-body-replace-cells-seven-years.html; P. Heinke et al., "Diploid Hepatocytes Drive Physiological Liver Renewal in Adult Humans," Cell Systems 13, no. 6 (June 15, 2022): 499–507.e12, https://doi.org/10.1016/j.cels.2022.05.001; K. L. Spalding et al., "Dynamics of Hippocampal Neurogenesis in Adult Humans," Cell 153, no. 6 (June 6, 2013): 1219–27, https://doi.org/10.1016/j.cell.2013.05.002; A. Ernst et al., "Neurogenesis in the Striatum of the Adult Human Brain," Cell 156, no. 5 (February 27, 2014): 1072–83, https://doi.org/10.1016/j.cell.2014.01.044.
337
Всестороннюю дискуссию на тему истощения стволовых клеток см.: López-Otín et al., "Hallmarks of Aging," 1194–217, https://doi.org/10.1016/j.cell.2013.05.039.
338
A. Ocampo et al., "In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming," Cell 167, no. 7 (December 15, 2016): 1719–33.e12, https://doi.org/10.1016/j.cell.2016.11.052.
339
K. C. Browder et al., "In Vivo Partial Reprogramming Alters Age-Associated Molecular Changes During Physiological Aging in Mice," Nature Aging 2, no. 3 (March 2022): 243–53, https://doi.org/10.1038/s43587–022–00183–2; D. Chondronasiou et al., "Multi-omic Rejuvenation of Naturally Aged Tissues by a Single Cycle of Transient Reprogramming," Aging Cell 21, no. 3 (March 2022): e13578, https://doi.org/10.1111/acel.13578; D. Gill et al., "Multi-omic Rejuvenation of Human Cells by Maturation Phase Transient Reprogramming," eLife 11 (April 8, 2022): e71624, https://doi.org/10.7554/eLife.71624.
340
Y. Lu et al., "Reprogramming to Recover Youthful Epigenetic Information and Restore Vision," Nature 588, no. 7836 (December 2020): 124–29, https://doi.org/10.1038/s41586–020–2975–4; см. также заметку в новостях: K. Servick, "Researchers Restore Lost Sight in Mice, Offering Clues to Reversing Aging," Science online, дата последнего изменения 02.12.2020, https://doi.org/10.1126/science.abf9827.
341
J.-H. Yang et al., "Loss of Epigenetic Information as a Cause of Mammalian Aging," Cell 186, no. 2 (January 19, 2023), https://doi.org/10.1016/j.cell.2022.12.027.
342
R. B. S. Harris, "Contribution Made by Parabiosis to the Understanding of Energy Balance Regulation," Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease1832, no. 9 (September 2013): 1449–55, https://doi.org/10.1016/j.bbadis.2013.02.021.
343
C. M. McCay, F. Pope, and W. Lunsford, "Experimental Prolongation of the Life Span," Journal of Chronic Diseases 4, no. 2 (August 1956): 153–58, https://www.sciencedirect.com/science/article/abs/pii/0021968156900157. Цит. в обозрении: M. Scudellari, "Ageing Research: Blood to Blood," Nature 517, no. 7535 (January 22, 2015): 426–29, https://doi.org/10.1038/517426a.
344
Scudellari, "Ageing Research," 426–29.
345
M. J. Conboy, I. M. Conboy, and T. A. Rando, "Heterochronic Parabiosis: Historical Perspective and Methodological Considerations for Studies of Aging and Longevity," Aging Cell 12, no. 3 (June 2013): 525–30, https://doi.org/10.1111/acel.12065.
346
S. A. Villeda et al., "The Ageing Systemic Milieu Negatively Regulates Neurogenesis and Cognitive Function," Nature 477, no. 7362 (August 31, 2011): 90–94, https://doi.org/10.1038/nature10357; S. A. Villeda et al., "Young Blood Reverses Age-Related Impairments in Cognitive Function and Synaptic Plasticity in Mice," Nature Medicine 20, no. 6 (June 2014): 659–63, https://doi.org/10.1038/nm.3569.
347
Conboy, Conboy, and Rando, "Heterochronic Parabiosis," 525–30.
348
J. Rebo et al., "A Single Heterochronic Blood Exchange Reveals Rapid Inhibition of Multiple Tissues by Old Blood," Nature Communications 7, no. 1 (June 10, 2016): art. 13363, https://doi.org/10.1038/ncomms13363.
349
Rebecca Robbins, "Young-Blood Transfusions Are on the Menu at Society Gala," Scientific American online, дата последнего изменения 02.03.2018, https://www.scientificamerican.com/article/young-blood-transfusions-are-on-the-menu-at-society-gala.
350
Scott Gottlieb, "Statement from FDA Commissioner Scott Gottlieb, M.D., and Director of FDA's Center for Biologics Evaluation and Research Peter Marks, M.D., Ph.D., Cautioning Consumers Against Receiving Young Donor Plasma Infusions That Are Promoted as Unproven Treatment for Varying Conditions," U. S. Food and Drug Administration, press release, February 19, 2019, https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-director-fdas-center-biologics-evaluation-and-0.
351
Emily Mullin, "Exclusive: Ambrosia, the Young Blood Transfusion Startup, Is Quietly Back in Business," OneZero, дата последнего изменения 08.11.2019, https://onezero.medium.com/exclusive-ambrosia-the-young-blood-transfusion-startup-is-quietly-back-in-business-ee2b7494b417.
352
J. M. Castellano et al., "Human Umbilical Cord Plasma Proteins Revitalize Hippocampal Function in Aged Mice," Nature 544, no. 7651 (April 27, 2017): 488–92, https://doi.org/10.1038/nature22067; H. Yousef et al., "Aged Blood Impairs Hippocampal Neural Precursor Activity and Activates Microglia Via Brain Endothelial Cell VCAM1," Nature Medicine 25, no. 6 (June 2019): 988–1000, https://doi.org/10.1038/s41591–019–0440–4.
353
F. S. Loffredo et al., "Growth Differentiation Factor 11 Is a Circulating Factor That Reverses Age-Related Cardiac Hypertrophy," Cell 153, no. 4 (May 9, 2013): 828–39, https://doi.org/10.1016/j.cell.2013.04.015; M. Sinha et al., "Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle," Science 344, no. 6184 (May 9, 2014): 649–52, https://doi.org/10.1126/science.1251152; L. Katsimpardi et al., "Vascular and Neurogenic Rejuvenation of the Aging Mouse Brain by Young Systemic Factors," Science 344, no. 6184 (May 9, 2014): 630–34, https://doi.org/10.1126/science.1251141. Результаты исследования описаны в весьма доступной форме в статье Карла Зиммера: Carl Zimmer, "Young Blood May Hold Key to Reversing Aging," New York Times online, May 4, 2014, https://www.nytimes.com/2014/05/05/science/young-blood-may-hold-key-to-reversing-aging.html.
354
O. H. Jeon et al., "Systemic Induction of Senescence in Young Mice After Single Heterochronic Blood Exchange," Nature Metabolism 4, no. 8 (August 2022): 995–1006, https://doi.org/10.1038/s42255–022–00609–6.
355
A. M. Horowitz et al., "Blood Factors Transfer Beneficial Effects of Exercise on Neurogenesis and Cognition to the Aged Brain," Science 369, no. 6500 (July 10, 2020): 167–73, https://doi.org/10.1126/science.aaw2622.
356
J. O. Brett et al., "Exercise Rejuvenates Quiescent Skeletal Muscle Stem Cells in Old Mice Through Restoration of Cyclin D1," Nature Metabolism 2, no. 4 (April 2020): 307–17, https://doi.org/10.1038/s42255–020–0190–0.
357
M. T. Buckley et al., "Cell Type-Specific Aging Clocks to Quantify Aging and Rejuvenation in Regenerative Regions of the Brain," Nature Aging 3 (January 2023): 121–37, https://www.nature.com/articles/s43587–022–00335–4.
358
David Averre and Neirin Gray Desai, "Tech Billionaire, 45, Who Spends $2 Million a Year Trying to Reverse His Ageing Reveals Latest Gadget He Uses That Puts His Body Through the Equivalent of 20,000 Sit Ups in 30 Minutes," Daily Mail (London) online, last modified April 5, 2023, https://www.dailymail.co.uk/news/article-11942581/Tech-billionaire-45-spends-2million-year-trying-reverse-ageing-reveals-latest-gadget.html; Orianna Rosa Royle, "Tech